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Abstract 

Numerical understanding and arithmetic skills are easier to acquire for whole numbers than 

fractions. The integrated theory of numerical development posits that, in addition to these 

differences, whole numbers and fractions also have important commonalities. In both, 

students need to learn how to interpret number symbols in terms of the magnitudes to which 

they refer, and this magnitude understanding is central to general mathematical competence. 

We investigated relations among fraction magnitude understanding, arithmetic and general 

mathematical abilities in countries differing in educational practices: U.S., China and 

Belgium. Despite country-specific differences in absolute level of fraction knowledge, 6th and 

8th graders’ fraction magnitude understanding was positively related to their general 

mathematical achievement in all countries, and this relation remained significant after 

controlling for fraction arithmetic knowledge in almost all combinations of country and age 

group. These findings suggest that instructional interventions should target learners’ 

interpretation of fractions as magnitudes, e.g., by practicing translating fractions into positions 

on number lines. 

Highlights: 

• Fraction magnitude understanding and general math achievement are correlated 

• This correlation remains when controlling for fraction arithmetic 

• This pattern of results was found with 6th and 8th graders from three continents 

• This supports the pivotal role of fraction understanding in math achievement 

• It also indicates magnitude understanding is central for numerical development 

Keywords: fractions; magnitude representations; arithmetic; integrated theory of numerical 

development; cultural differences 
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Bridging the Gap: Fraction Understanding is Central to Mathematics Achievement in 

Students from Three Different Continents 

1. Introduction 

Understanding fractions is crucial for mathematics learning: It not only requires a deeper 

understanding of numbers than is ordinarily gained through experience with whole numbers, 

it is also predictive for students’ mathematical achievement years later (Bailey, Hoard, 

Nugent, & Geary, 2012; Booth & Newton, 2012; Siegler et al., 2012). Despite increasing 

research interest in the domain of fractions, almost all studies of the role of fraction 

magnitude understanding in mathematics learning have been conducted in the U.S., limiting 

the generality of the findings to only U.S. students and adults. This study aims to deepen our 

understanding of the pivotal role of fraction magnitude understanding for students’ general 

math achievement in three countries on three different continents that differ greatly in cultural 

and educational practices. 

1.1 The Integrated Theory of Numerical Development 

Our starting point was Siegler, Thompson, and Schneider’s (2011) integrated theory of 

numerical development.1 As discussed there, current theories of numerical development fail to 

integrate whole numbers and fractions within a single framework (e.g., Geary, 2006; Leslie, 

Gelman, & Gallistel, 2008; Wynn, 2002). Although these theories differ in many particulars, 

they all posit a gap between an early developing, “natural” understanding of whole numbers 

and a later developing, flawed, limited, or hard-won understanding of fractions. To the extent 

that relations between whole numbers and fractions are posited, the earlier developing 

understanding of whole numbers is said to interfere with the later developing understanding of 

fractions. For instance, according to conceptual change theories (DeWolf & Vosniadou, this 

issue; Stafylidou & Vosniadou, 2004; Vamvakoussi & Vosniadou, 2010), children form an 

initial theory of number as counting units before they encounter fractions, and draw heavily 
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on this initial understanding of number to make sense of fractions. Children’s faulty 

generalization of understanding of number as counting units interferes with their learning 

about fractions, a phenomenon often referred to as the “whole number bias” (Ni & Zhou, 

2005). 

Siegler et al.’s (2011) integrated theory of numerical development recognizes these 

important differences between learning of whole numbers and fractions, but also emphasizes a 

crucial continuity that unites their acquisition -- steadily expanding understanding of the 

connection between numbers and their magnitudes. Within this perspective, development of 

understanding of rational numbers involves both a gradual expansion of the range of whole 

numbers whose magnitudes are understood (from smaller to larger) and a conceptual change 

from an initial understanding of numbers in terms of characteristic features of whole numbers 

to a later understanding of rational numbers in terms of a single defining feature, their 

magnitudes (see Wu, 2001, 2009, for a similar argument).  

The integrated theory differs from conceptual change theories in two main ways. One is 

in its recognizing the positive role of whole number magnitude knowledge in learning 

fractions, as indicated by longitudinal relations between first graders’ knowledge of whole 

number magnitudes and 7th and 8th graders’ knowledge of fraction magnitudes and fraction 

arithmetic, even after statistically controlling for the IQ, working memory, socio-economic 

status, race, and other relevant variables (Bailey, Siegler, & Geary, in press). The second main 

difference between the integrated theory and conceptual change theories of fraction 

knowledge is that the integrated theory views interference from whole number knowledge as 

only one of several sources of difficulty in learning fractions. Evidence for this view comes 

from findings that despite whole number errors, such as 1/2 + 2/3 = 3/5 being common, 

confusion with other fraction operations, such as the confusion between fraction addition and 
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fraction multiplication evident in 1/3 * 2/3 = 2/3, can be even more common (Siegler & Pyke, 

2013). 

Within this integrated theory, the reason why fractions are more difficult to learn than 

whole numbers is the same reason why fractions are crucial to numerical development. A 

fraction is a ratio or division of two whole numbers, numerator and denominator, and is thus 

considerably more complex than a single whole number. Whole numbers have unique 

predecessors and successors, but this is not true of fractions. Multiplying a whole number 

always leads to a larger number and dividing a whole number always leads to a smaller 

number, but again this is not true of fractions. Thus, generating a mature understanding of 

rational numbers requires understanding both the one property that all rational numbers share 

-- that they have magnitudes that can be located and ordered on number lines -- and 

understanding that other properties that unite whole numbers do not unite rational numbers. 

Consistent with this theory, Siegler et al. (2011) found strong relations between U.S. 6th 

and 8th graders’ fraction magnitude understanding and their general mathematics 

achievement, even when their mutual relation to fraction arithmetic was statistically 

controlled. However, these and other data on this topic were collected almost exclusively in 

the U.S. It thus remains an open question whether the findings are due to the proposed general 

cognitive learning mechanisms of the theory or to specific properties of the U.S. cultural and 

educational system (e.g., cultural beliefs about mathematics, teacher training, time spent on 

mathematics, mathematics curricula). 

1.2 Previous Studies on Fraction Understanding 

Although research interest in students’ acquisition of fraction knowledge and skill has 

increased in recent years, such studies are still far less numerous than studies of whole 

number understanding. However, the limited number of studies of fractions and the much 

larger number of studies of whole numbers have revealed highly similar relations among 
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magnitude understanding, arithmetic and general mathematics achievement (Siegler, Fazio, 

Bailey, & Zhou, 2013). 

The same types of behavioural methods have proved useful for investigating fraction as 

whole number magnitudes: magnitude comparison tasks, in which participants compare the 

magnitudes of two whole numbers or fractions and indicate the larger one, and number line 

estimation tasks, in which participants indicate the position of a given whole number or 

fraction on an empty number line with clearly indicated start and end point. Studies using 

these methods have consistently revealed that, as with whole number magnitude 

representations, the precision of fraction magnitude representations differs greatly between 

and within individuals, depending on students’ (instructional) experiences with fractions and 

the size of the fractions (Siegler et al., 2011; Siegler & Pyke, 2013). Also as with whole 

numbers, fraction magnitude understanding has proved to be quite strongly correlated with 

other aspects of mathematics learning. On top of this correlational evidence, recent 

investigations provide evidence for predictive relations between earlier fraction magnitude 

understanding and subsequent knowledge of fraction arithmetic, algebra and overall math 

achievement (Bailey et al., 2012; Booth & Newton, 2012; Siegler et al., 2012). To cite one 

example, Siegler et al. (2012) demonstrated that 5th graders’ fraction knowledge predicts their 

mastery of algebra and overall mathematics achievement in high school, 5 or 6 years later, 

even after controlling for IQ, reading achievement, working memory, family income and 

education, and whole number knowledge. The same relations were found in both U.K. and 

U.S. longitudinal samples. Moreover, Fuchs and colleagues (2013) demonstrated that 

instruction focused on fraction magnitude understanding improved not only understanding of 

fraction magnitudes but also fraction arithmetic proficiency among children with mathematics 

learning difficulties. Taken together, these results indicate that magnitude representations are 

as central to knowledge of fractions as to knowledge of whole numbers. 



Running head: FRACTION UNDERSTANDING: THREE CONTINENTS 7 

However, to the best of our knowledge, all previous behavioural studies of the role of 

fraction magnitude understanding in mathematics learning have been conducted in the U.S. -- 

with the one exception of Siegler et al. (2012), which included both U.S. and U.K. samples. 

This raises questions about the generality of the findings and (consequently) the applicability 

of the integrated theory of numerical development to populations in other countries and 

continents. Differences in instructional methods, curricular devices, teacher expertise, and 

students’ absolute levels of achievement might all limit the generality of the findings that 

have been viewed as supporting the integrated theory. Therefore, in the present study, we 

investigated students’ fraction understanding in three countries with quite different 

instructional methods and teaching practices: Belgium (Flanders), China, and the U.S. 

1.3 Differences in Teacher Knowledge and Instructional Practices in Mathematics 

International investigations of (prospective) teachers’ knowledge, instructional practices 

and student performances in the domain of mathematics not only document country-specific 

differences in (prospective) teachers’ knowledge and instructional practices, but also stress 

the importance of these variables for students’ mathematical development. Systematic studies 

in Europe and North America point to deficits in (prospective) teachers’ content and 

pedagogical content knowledge of mathematics in general and rational numbers in particular 

(e.g., Ball, 1990; Hill, Rowan, & Ball, 2005; Krauss et al., 2008; Merenluoto & Lehtinen, 

2002; Senk et al., 2012). For instance, most U.S. elementary school teachers participating in 

the study of Ball (1990) could correctly solve a fraction division task, but they had serious 

conceptual difficulties in understanding the meaning of the algorithm for division of fractions 

and in generating an appropriate representation for a division of fraction task. Likewise, the 

seminal interview study of Ma (1999) on Chinese and U.S. teachers’ mathematical knowledge 

revealed large differences in mathematical content and pedagogical knowledge of teachers in 

the two countries, including their understanding and teaching of fractions. Recent studies on 
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Belgian (Flanders) prospective teachers’ content and pedagogical content knowledge of 

rational numbers and other areas of mathematics also demonstrated weaknesses in these 

students’ knowledge of mathematical content and pedagogy (Depaepe et al., 2013; 

Verschaffel, Janssens, & Janssen, 2005). Since teachers’ mathematical knowledge is crucial 

for both instructional quality and student achievement (Hattie, 2009), country-specific 

differences in the quality of the mathematics lessons and in students’ math performances can 

be expected. 

Findings from the most recent TIMSS (Trends in International Mathematics and Science 

Study; Mullis, Martin, & Foy, 2008; Mullis, Martin, Foy, & Arora, 2012) also revealed a 

number of cultural differences relevant to mathematics teaching and learning. The 

participating countries, including Belgium (Flanders), China and the U.S., differed not only in 

teacher training, experience, and career satisfaction, but also in the amount and quality of 

mathematics instruction at school, and in students’ mathematical experiences outside of 

school. Moreover, these cultural and instructional differences were strongly related to 4th and 

8th graders’ performances in the domain of mathematics. Although the TIMSS did not 

specifically focus on fraction understanding, these cultural and educational differences seem 

likely to influence learning of fractions as well as other areas of mathematics. Many of the 

same national differences have been documented in smaller, experimental studies on 

mathematics knowledge in China and the U.S. and in other international comparisons (e.g., 

Stevenson & Stigler, 1992). 

Thus, international comparisons of (prospective) teachers’ mathematics knowledge and 

instructional approaches demonstrate clear differences among countries, including Belgium, 

China, and the U.S. These educational and instructional differences appear to impact students’ 

mathematical development. Cross-cultural performance differences in the domain of 

mathematics in general were observed in, for instance, the most recent TIMSS (Mullis et al., 
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2008, 2012): Of the 29 East Asian, European, and North American countries that participated 

in the 2011 Grade 4 TIMSS, Chinese students ranked 4th, Belgian students 7th, and U.S. 

students 11th. Of the 18 North American, East Asian, and European countries in the Grade 8 

TIMSS, Chinese students ranked 3rd and U.S. students 9th (no information was available for 

Belgian students in grade 8). Such performance differences in the domain of mathematics in 

general and the domain of fractions in particular have been observed in other international 

comparisons as well (e.g., Wang & Lin, 2009). 

1.4 The Present Study 

To test the generality of the major assumption of the integrated theory of numerical 

development, namely that fraction magnitude understanding is crucial to overall mathematics 

learning, we selected three countries that are known to differ in teachers’ knowledge, 

instructional practices and students’ performances in the domain of mathematics, namely 

Belgium (Flanders), China and the U.S. As documented above, previous work on 

(prospective) teachers’ mathematical knowledge indicated large differences in the knowledge 

required to effectively teach mathematics between Chinese and U.S. teachers, favouring the 

former. The mathematical knowledge of Belgian (prospective) teachers appears to be rather 

limited, closer to that of the U.S. teachers than to that of the Chinese teachers. On the other 

hand, Belgian and Chinese teachers are similar to each other and different than U.S. teachers 

in emphasizing magnitude interpretations and using number lines often during fraction 

instruction. 

Based on the results of international comparisons of student achievement and teacher 

knowledge of mathematics and approaches to teaching mathematics, we hypothesized that 

Chinese students would perform better than U.S. students on tasks assessing fraction 

magnitude understanding and fraction arithmetic (= Hypothesis 1a). We further expected 
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Belgian students to perform less well on these tasks than Chinese students (= Hypothesis 1b); 

but better than U.S. students (= Hypothesis 1c). 

Of greater interest, despite the expected performance differences on the fraction tasks 

among the participating countries, we did not expect differences among the three countries in 

the relation between students’ fraction magnitude understanding and their general 

mathematics achievement. Indeed, the integrated theory of numerical development implies 

that similar relations should be present regardless of the particular educational and cultural 

system, due to the inherent relations among different types of numbers and the inherent 

centrality of magnitude understanding to subsequent mathematics learning. We thus 

formulated our second hypothesis as follows: Not only in the U.S. sample, but also in the 

Belgian and the Chinese samples, students’ fraction magnitude understanding should be 

strongly related to their general mathematical achievement (= Hypothesis 2). 

From many perspectives, our second hypothesis is counterintuitive. Mathematics teachers 

in China have much deeper fraction knowledge than the ones in the U.S. (and presumably 

than the ones in Belgium). Hence, they might be able to compensate for differences in the 

students’ magnitude understanding by adapting their instruction to the students’ prior 

knowledge. This would lead to increases in fraction arithmetic skills and math achievement 

that are largely independent of students’ magnitude understanding. Moreover, country-

specific differences in the relation between fraction magnitude understanding and general 

mathematics achievement might be expected on the basis of differences in fraction 

instruction. Fraction instruction in the U.S. is almost exclusively based on the part-whole 

interpretation, whereas students in China and Belgium also encounter substantial emphasis on 

the measurement interpretation of fractions. From our analyses of the textbooks, it can be 

concluded that U.S. students are overwhelmingly confronted with the representation and 

interpretation of fractions as parts of a whole, e.g., as 1 slice of a pizza cut into 4 equal slices. 
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By contrast, mathematics textbooks used in Chinese and Belgian classes do not only 

emphasize part-whole representations and interpretations of fractions, but offer the students 

substantial experience with measurement representations and interpretations of fractions from 

the start of fraction instruction, e.g., by including (empty) number lines on which different 

fractions need to be positioned, ordered and compared in terms of their magnitude. The 

relation in the U.S. between knowledge of magnitudes, which is at the heart of the 

measurement interpretation, and mathematics achievement therefore might be present because 

only students who are particularly good at mathematics develop magnitude knowledge when 

it is not emphasized in instruction. By contrast, Chinese and Belgian students might not show 

such a relation, because children in those countries are taught the measurement interpretation, 

thus reducing the need to induce it. 

In the present study, we tested these hypotheses in samples of 6th and 8th grade students 

from Belgium (Flanders), China and the U.S. Despite differences in culture and educational 

approaches among the three participating countries, the timing of fraction instruction is highly 

similar. In all three countries, students are introduced to fractions (beyond the simplest ones, 

such as 1/2) in 2nd or 3rd grade; receive increasingly intensive instruction in fractions, 

including fraction arithmetic, in 4th through 6th grade; and receive further practice with 

fractions, embedded in pre-algebra and algebra problems, in later grades. Given the similar 

timing of fraction instruction in the participating countries, we decided to keep grade rather 

than chronological age constant across the countries.2 

2. Method 

2.1 Participants 

A sample of 187 students from Belgium (Flanders), China and the U.S. participated to the 

study. Only students with parental consent were included in the study. Table 1 describes the 

number of students (boys, girls) and their age (expressed in years) per grade and country. 
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-- Insert Table 1 about here -- 

As shown in Table 1, the Belgian sample consisted of 30 6th graders and 34 8th graders; all 

were students at a predominantly middle-income school in Flanders, Belgium. The Chinese 

sample involved 30 6th graders and 39 8th graders, coming from a school in Shijiazhuang City, 

North China’s Hebei Province. The U.S. sample included 31 6th graders (87% Caucasian, 7% 

Indian, 7% Multiracial) and 23 8th graders (91% Caucasian, 4% African-American, 4% 

Middle Eastern), recruited from two predominantly middle-income public school districts 

near Pittsburgh, PA. We observed no differences in the number of students and in the number 

of boys and girls in the different samples, all ps > .05, but Chinese students were 

approximately 1 year older than Belgian and U.S. students, F(2, 186) = 24.68, p < .01. 

2.2 Materials 

2.2.1 Fraction number line estimation 

We used two versions of the number line estimation task that differed only in the 

numerical range of the line and the presented numbers. The range of the number line was 

either zero-to-one or zero-to-five. As in past studies, the number line was12 inches (about 

31 cm) long. It had labels and hatch marks only at the start point (i.e., 0) and the end point 

(i.e., 1 or 5). On each trial, a different fraction was presented above the middle of the number 

line. Children were asked to click the mouse on the correct location of the value of the 

fraction on the number line. 

We measured accuracy by computing percentage absolute error (PAE) for each child, 

computed as 100 * abs (estimated value–correct value) / numerical range of the number line. 

For example, if a student was asked to locate 5/2 on a 0-5 number line and marked the 

location corresponding to 3/2, the PAE for that trial would be 100 * abs (1.5-2.5) / 5 or 20%. 

(Note that PAE varies inversely with accuracy; the higher the PAE, the less accurate the 

estimate). In the 0-1 range, we presented the 29 fractions: 0/1, 1/9, 1/8, 1/7, 1/6, 1/5, 2/9, 1/4, 
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2/7, 1/3, 3/8, 2/5, 3/7, 4/9, 1/2, 5/9, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 7/9, 4/5, 5/6, 6/7, 7/8, 8/9, and 

1/1. In the 0-5 range, we presented the 15 fractions: 2/9, 1/2, 4/7, 5/3, 17/9, 2/1, 9/4, 19/8, 8/3, 

13/4, 7/2, 23/6, 4/1, 22/5, and 9/2. 

2.2.2 Fraction magnitude comparison 

We presented 12 numerical magnitude comparison trials. On each trial, children saw two 

fractions next to each other in the middle of an otherwise empty screen. The fraction on the 

right side was always 3/5. Children had to decide whether the other fraction had a higher or a 

lower value. They were instructed to enter their answer by clicking at the smaller of the two 

numbers. We used the fractions 1/9, 1/4, 2/7, 1/3, 5/9, 4/7, 2/3, 4/6, 7/6, 4/3, 7/4 and 2/1, and 

scored the percentage of correctly solved trials. 

2.2.3 Fraction arithmetic 

We assessed fraction arithmetic competence by four addition and four division trials. The 

addition problems were 3/6 + 1/6, 5/2 + 5/3, 4/7 + 3/8, 10/3 + 5/11. The division problems 

had the same numbers and differed only in the operator. Children were allowed to do 

calculations on a sheet of paper. They were told that they did not have to reduce their answer 

to its lowest form, but could do so if they wanted. We scored the percentage of correctly 

solved trials. 

2.2.4 General math achievement 

We assessed the general math achievement competencies of the participating students 

using country-specific standardized mathematical achievement tests. For the Belgian sample, 

we applied two grade-specific Flemish standardized mathematical achievement tests (for 6th 

graders, LVS Wiskunde Midden 6; Deloof, 2005; for 8th graders, Peiling Wiskunde Eerste 

Graad A-stroom secundair onderwijs; Gielen et al., 2010); the participating Flemish 6th and 8th 

graders received above-average scores on these tests, with group mean scores of M = 38, 

SD = 12 (maximum score = 59) and M = 30.50, SD = 3.5 (maximum score = 39), respectively. 
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We assessed Chinese students’ mathematics proficiency on the basis of their mid-term 

mathematics examination score. Average mathematics proficiency scores were M = 90.08 

(SD = 6.40) for the 6th graders and M = 86.95 (SD = 10.91) for the 8th graders 

(maximum score = 100). The mathematics proficiency of the U.S. students was administered 

on the basis of the school-reported PSSA (Pennsylvania System of School Assessment), the 

standardized test used in the part of the U.S. where the study was performed. Most students, 

i.e., 71% of the 6th and 61% of the 8th graders, scored at or above a proficient level on this 

state test of mathematics achievement (for 6th graders, M = 1440, SD = 179; for 8th graders, 

M = 1459, SD = 258). 

2.3 Design and Procedure 

In each country, children were tested individually for about 30 minutes in a quiet room in 

their school. The procedure followed was identical in the three participating countries. All 

measures were presented on a laptop computer with a screen resolution of 1024 x 768 px. The 

assessment program saved answers in log files, which we used for our analyses. The order of 

the tasks and the order of the items in each task were randomized for each student. 

Participants completed all items on one task before being presented any items on the next. 

3. Results 

Results are presented in two parts. We first discuss the results relevant to the expected 

performance differences among Belgian, Chinese and U.S. students (cf. Hypotheses 1a, 1b 

and 1c). Next, we present the results relevant to the major goal of this study, i.e., we test the 

basic assumption of the integrated theory of numerical development that fraction magnitude 

understanding is closely related to students’ general mathematics achievement in all three 

countries (cf. Hypothesis 2). 

3.1 Differences among Countries on Fraction Tasks 

3.1.1 Fraction number line estimation 
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A 3 (Country: Belgium, China or U.S.) × 2 (Grade: 6th or 8th) ANOVA revealed grade- 

and country-specific differences in students’ mean PAE on the 0-1 number line estimation 

task. As expected, 8th graders more accurately estimated fraction magnitudes than 6th graders, 

PAE’s = 7% and 12%, F(1, 186) = 11.79, p < .01, partial eta² = .06. Also as expected, 

Belgian, Chinese, and U.S. students’ estimation accuracy differed, F(2, 186) = 22.67, p < .01, 

partial eta² = .20. Chinese students were much more accurate than U.S. students, mean 

PAE = 6% and 16%. Belgian students’ accuracy (mean PAE = 7%) was as high as that of 

Chinese students and much higher than that of U.S. students. The non-significant 

Country × Grade interaction, F(2, 186) < 1, revealed that these country-specific differences in 

accuracy of estimates were present in both 6th and 8th grade (Table 2). 

We observed similar results on 0-5 number lines. Sixth graders provided less accurate 

estimates than 8th graders, mean PAE = 20% and 11%, F(1, 186) = 44.41, p < .01, partial 

eta² = .20. On this more difficult number line task, Chinese students estimated more 

accurately than Belgian students, who, in turn, estimated more accurately than U.S. students, 

PAE = 9%, 16% and 23%, F(2, 186) = 34.46, p < .01, partial eta² = .28. Again, the 

Country × Grade interaction was not significant, F(2, 186) < 1. 

-- Insert Table 2 about here -- 

3.1.2 Fraction magnitude comparison 

A 3 (Country: Belgium, China or U.S.) × 2 (Grade: 6th or 8th) ANOVA indicated that 

Chinese and Belgian students compared fraction magnitudes more accurately than U.S. 

students, M’s = 82%, 82%, and 71%, F(2, 186) = 3.58, p = .03, partial eta² = .04; and that 8th 

graders compared them more accurately than 6th graders, M’s = 85% and 72%, 

F(1, 186) = 11.59, p < .01, partial eta² = .06 (Table 2). The Country × Grade interaction was 

not significant, F(2, 186) < 1. 

3.1.3 Fraction arithmetic 



Running head: FRACTION UNDERSTANDING: THREE CONTINENTS 16 

A parallel Country × Grade ANOVA on fraction addition revealed main effects of 

Country, F(2, 186) = 86.74, p < .01, partial eta² = .49, and Grade, F(1, 186) = 13.95, p < .01, 

partial eta² = .07, and also a Country × Grade interaction, F(2, 186) = 7.07, p < .01, partial 

eta² = .07. The interaction reflected fraction addition in Belgium and China being similarly 

(highly) accurate in 6th and 8th grade, but performance in the U.S. starting out far lower and 

improving considerably between 6th and 8th grade (Table 2). 

For the fraction division task, a parallel Country × Grade ANOVA showed main effects 

of Country, F(2, 186) = 82.01, p < .01, partial eta² = .48, and Grade, F(1, 186) = 13.95, 

p < .01, partial eta² = .07. Chinese students divided fractions more accurately than Belgian 

students, M’s = 91% and 71%; Belgian students divided more accurately than U.S. students, 

M = 22% correct; and 8th graders divided more accurately than 6th graders, M’s = 75% and 

53%. The Country × Grade interaction just failed to reach significance, F(2, 186) = 2.79, 

p = .06, partial eta² = .03. Division accuracy increased between 6th and 8th grade for both 

Belgian and U.S. samples, whereas Chinese 6th and 8th graders were similarly accurate. 

3.1.4 Conclusion 

As expected, we observed clear differences among Belgian, Chinese and U.S. students in 

absolute levels of fraction knowledge. Consistent with Hypothesis 1a, Chinese students 

obtained higher scores on all fraction tasks than U.S. students; these results were observed in 

both 6th and 8th grade. Moreover, as indicated in Hypothesis 1c, Belgian students were 

consistently more accurate than their U.S. peers. The expected performance differences 

between Belgian and Chinese students, however, were only observed on the most difficult 

fraction tasks. Our findings revealed performance differences between the latter two groups of 

students on 0-5 number lines and fraction division, but contrary to Hypothesis 1b, similar 

differences were not present on number line and magnitude comparison with fractions from 0-

1 or on fraction addition. 
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3.2 Relations among Magnitude Knowledge, Arithmetic, and Math Achievement 

To test our major hypothesis -- namely, that not only in the U.S. sample, but also in the 

Belgian and Chinese samples, fraction magnitude understanding is strongly related to general 

mathematics achievement (Hypothesis 2) -- we conducted correlational and hierarchical 

regression analyses. To increase the reliability of our measures and the statistical power of our 

tests, we averaged PAE’s on the 0-1 and 0-5 number lines into a composite PAE, and we 

combined the addition and division percentages correct into a single arithmetic composite. 

Table 3 presents correlations between number line estimation, magnitude comparison, 

arithmetic, and mathematics achievement scores. Although there were differences in the 

pattern of correlations across countries and grades, we found consistent strong correlations 

between number line estimation and mathematics achievement scores in all three countries. 

These correlations are consistent with the integrated theory’s assumption that understanding 

of fraction magnitudes underlies general mathematics competence in this age range. Only for 

Chinese 8th graders was this relation not present; its absence might be due to these students’ 

very high performance on, and consequently small variance in, number line estimation. 

The correlations shown in Table 3 point to two other important results that require further 

attention. First, although number line estimation and magnitude comparison are generally 

assumed to measure the same underlying construct, i.e., students’ magnitude understanding, 

strong correlations between the two was only present for U.S. 6th and 8th graders and, to a 

lesser extent, Belgian 6th graders. Moreover, magnitude comparison was correlated with 

general math achievement only in the U.S. samples. As discussed in more detail below, these 

variable relations raise questions about the reliability and validity of the magnitude 

comparison task with fractions. 

Second, we found relatively weak, though sometimes significant, relations between 

number line estimation performances and fraction arithmetic scores (ranging from r = -.23 to 
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r = -.44). The relatively low correlations suggest that the two variables measure different 

competencies and that a common relation to IQ cannot explain the relation between the two 

variables and students’ mathematics achievement test scores. 

-- Insert Table 3 about here -- 

We next conducted hierarchical regression analyses to test whether a common relation to 

fraction arithmetic explained the relation between fraction magnitude understanding, as 

measured by number line PAE, and mathematics achievement scores. We evaluated the 

adequacy of four models for predicting mathematics achievement, namely (a) arithmetic 

accuracy (Model 1); (b) arithmetic accuracy + number line PAE (Model 2); (c) number line 

PAE (Model 3); (d) number line PAE + arithmetic accuracy (Model 4). Table 4 summarizes 

the results per model, country and grade. 

-- Insert Table 4 about here -- 

When fraction arithmetic accuracy was first entered as a predictor of mathematics 

achievement, adding number line estimation considerably increased the explained variance in 

overall mathematics achievement in 5 of the 6 Country × Grade combinations (all except 

among Chinese 8th graders). In contrast, when number line estimation PAE was first entered 

as a predictor of mathematics achievement scores, adding fraction arithmetic accuracy 

increased the explained variance in the U.S. sample only. 

Taken together, these results support the major assumption of the integrated theory of 

numerical development, as expressed in Hypothesis 2: Fraction magnitude understanding, as 

measured with number line estimation tasks, predicts mathematics achievement, even when 

fraction arithmetic skill is statistically controlled. The data from the Belgian 6th and 8th 

graders, Chinese 6th graders, and U.S. 8th graders provided clear evidence for this assumption. 

The data from the U.S. 6th graders were less straightforward, as fraction arithmetic 

competency and number line estimation were equally important for mathematics achievement. 
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For Chinese 8th graders, neither fraction magnitude understanding nor fraction arithmetic skill 

predicted mathematics achievement. This might be due to Chinese 8th grade students’ 

generally high performances, and (thus) small variance in performances, on the fraction tasks. 

Finally, the moderate correlations between fraction magnitude understanding and arithmetic 

among Belgian, Chinese and U.S. 6th and 8th graders, as well as the non-significant 

contribution of Belgian and Chinese students’ fraction arithmetic skill when magnitude 

understanding was statistically controlled, argue against the possibility that the relations 

among fraction arithmetic, fraction magnitude knowledge and math achievement are only due 

to shared relations to IQ, which presumably would affect fraction arithmetic as well as 

fraction magnitude estimation. Hence, fraction magnitude understanding plays a pivotal role 

in mathematics development. 

4. Discussion 

The integrated theory of numerical development emphasizes that fractions play a key role 

in learning mathematics. Individual differences in the precision of fraction magnitude 

representations in later elementary school and middle school are hypothesized to play the 

same central role in mathematics achievement that differences in the precision of whole 

number magnitude representations play in earlier grades, when whole number magnitude 

representations are more variable. To test this assumption, we conducted a cross-cultural 

study in three countries that differ in the quality of teachers’ mathematical knowledge, the 

instructional tools used for fraction instruction, and students’ general math performances. 

Taking into account the results of previous work, we expected differences among countries in 

performance on fraction number line estimation, magnitude comparison, and arithmetic (cf. 

Hypotheses 1a, 1b, and 1c). By contrast, we did not expect country-specific differences in the 

relation between students’ fraction magnitude understanding and their general math 
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achievement scores, as this relation is assumed to reflect a general cognitive characteristic 

rather than a cultural or educational artefact (cf. Hypothesis 2). 

4.1 Performance Differences in Fraction Magnitude Understanding and Arithmetic 

In line with previous studies in the domain of fractions (e.g., Hill et al., 2005; Krauss et 

al., 2008; Mullis et al., 2008, 2012; Senk et al., 2012), the present study provided suggestive 

evidence for the influence of teachers’ mathematical knowledge and instructional tools on 

fraction learning. Chinese students, instructed by teachers with rich mathematical knowledge 

and emphasizing number line interpretations of fractions, performed better on fraction 

magnitude understanding and fraction arithmetic tasks than U.S. students, who are often 

taught by teachers with shallower mathematical understanding (cf. Hypothesis 1a). Belgian 

students, taught by teachers whose mathematics knowledge seems to fall in between that of 

teachers in China and the U.S., made less errors than their U.S. peers on all fraction tasks (cf. 

Hypothesis 1c), but had more difficulty than their Chinese peers on the most difficult fraction 

tasks, i.e., 0-5 number line estimation and fraction division (cf. Hypothesis 1b). These 

findings suggest that instruction in both Belgium and China is strong enough for children to 

master the easier fraction tasks, but only the instruction in China is strong enough for children 

to learn the more difficult ones. However, since we were not able to conduct fine-grained 

analyses on the quality of fraction instruction provided to the students in our study, it is not 

clear whether this pattern is primarily due to Chinese teachers providing consistently superior 

instruction and Belgian teachers providing instruction that was good enough for students to 

master easier problems but not harder ones, or whether it is largely attributable to other 

cultural and educational differences, the amount of time spent on more difficult fraction 

problems, student motivation, or mastery of related mathematical concepts. Future studies are 

needed to test the viability of these potential explanations. 

4.2 Fraction Magnitude Understanding as a Key for General Math Development 
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Of particular importance, the present study provided evidence for the pivotal role of 

fraction understanding in students’ mathematics achievement across countries differing in 

cultural and educational practices (cf. Hypothesis 2). These results are in line with the major 

findings of previous studies with U.S. samples (see Bailey et al., 2012; Booth & Newton, 

2012; Siegler et al., 2012; Siegler et al., 2013; Siegler & Pyke, 2013; Siegler et al., 2011) and 

thus indicate that prior findings on this topic are not limited to the U.S. 

In Belgium, China, and the U.S., we observed consistent relations between students’ 

fraction understanding and overall mathematics achievement. Moreover, in all three countries, 

fraction magnitude understanding was the best predictor of mathematics achievement scores, 

even after controlling for variation in fraction arithmetic skill. We did not observe this pattern 

of results in the oldest group of Chinese students, presumably due to ceiling effects in their 

knowledge of fraction magnitudes. Taken together, these results indicate that the relation 

between fraction magnitude understanding and mathematics achievement is not attributable to 

specifics of the U.S. educational system. Instead, the strong relation between fraction 

magnitude understanding and mathematics achievement can be interpreted as a general 

cognitive characteristic of all students, regardless of their specific cultural and educational 

background. 

This conclusion does not imply that students’ mathematics instructional histories have no 

influence on this relation. As indicated by the differences in the observed patterns for U.S. 6th 

graders and Chinese 8th graders, quality of instruction might strengthen or weaken the role of 

fraction understanding in mathematics learning. For instance, the importance of individual 

differences in fraction magnitude understanding might be diminished if all students receive 

strong mathematics instruction in which teachers maximize the learning opportunities for all 

students, including the weakest ones. Focused and well-designed intervention studies are 
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needed to unravel the important but complex relation between the quality of fraction 

instruction and students’ progress in the domain of fractions and beyond. 

Finally, it might be argued that the observed relations between fraction magnitude 

understanding and general mathematical achievement are merely reflections of students’ 

general intellectual abilities, as we did not control for this variable in the present study. 

However, both our results and the findings from other recent studies argue against this 

interpretation. First, the moderate correlations between fraction magnitude understanding and 

fraction arithmetic skill, and also the non-significant contribution of fraction arithmetic skill 

to general math achievement scores when magnitude understanding was statistically 

controlled, argue against the possibility that the relations among arithmetic, magnitude 

knowledge, and overall achievement that we observed in the present study were only due to 

shared relations to IQ. Moreover, recent empirical investigations on this topic have 

demonstrated that fraction understanding is strongly related to fraction arithmetic and 

mathematical achievement, even after statistically controlling for IQ, reading level, executive 

functioning, and knowledge of all four whole number operations (Bailey et al., in press; 

Siegler et al., 2012; Siegler & Pyke, 2013). Notwithstanding these findings and arguments, 

future studies should take into account students’ general intellectual capacities when 

analysing the pivotal role of fraction magnitude understanding in their further math 

development. 

Future studies are also needed to test whether the integrated theory of numerical 

development applies not only to rational numbers but also to irrational numbers (i.e., numbers 

that cannot be expressed as common fractions, for example the square root of 2 and the 

number π). All real numbers, not just the rational numbers, can be compared, ordered, and 

interpreted as points on a number line (Bloch, 2011, p. 1). This suggests that a key step in 

understanding real numbers is the realization that not only whole numbers or rational numbers 
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but in fact all real numbers have magnitudes that can be represented along a number line. To 

the best of our knowledge, this hypothesis has not been tested empirically so far. 

4.3 Number Line Estimation and Number Comparison as Assessments of Numerical 

Understanding 

The present study also adds to recent discussions of relations between the tasks that are 

used to empirically investigate magnitude understanding (cf. Ebersbach, Luwel, & 

Verschaffel, 2013; Sasanguie, Defever, Van den Bussche, & Reynvoet, 2011). With whole 

numbers, both number line estimation and number comparison tasks correlate substantially 

with mathematical achievement and more specific mathematical skills in various countries 

and age groups (e.g., Booth & Siegler, 2006; De Smedt, Verschaffel, & Ghesquière, 2009; 

Holloway & Ansari, 2008; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013; Schneider, 

Grabner, & Paetsch, 2009; Schneider et al., 2008; Siegler & Ramani, 2009). This 

demonstrates that both tasks reliably assess central aspects of mathematical competence. 

However, it has also been shown that versions of these tasks differing in surface structures 

and cognitive demands tap into partly different aspects of magnitude understanding and can 

yield, for example, different solution rates or different correlations with achievement 

measures (cf. De Smedt, Noël, Gilmore, & Ansari, 2013; Gilmore et al., 2013; Huber, 

Moeller, & Nuerk, 2013; Lyons, Ansari, & Beilock, 2012; Sasanguie & Reynvoet, 2013; 

Schneider et al., 2008; Vogel, Grabner, Schneider, Siegler, & Ansari, 2013). Our results 

demonstrate that number line estimation and number comparison tap into partly different 

aspects of magnitude understanding, not only with whole numbers but also with fractions. 

Future empirical research is needed to show in greater detail how task demands moderate the 

outcomes and the reliabilities of different assessments of magnitude knowledge for both types 

of numbers. 

4.4 Instructional Implications 
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The centrality of magnitude understanding for mathematical achievement has profound 

implications for teaching fractions. For whole numbers, it has been shown that simple 

feedback interventions (Opfer & Siegler, 2007) and even numerical board games (Ramani & 

Siegler, 2008), in which children map numbers onto space, can substantially improve 

children’s magnitude understanding. These interventions can be implemented in classrooms 

easily and effectively (Ramani, Siegler, & Hitti, 2012). The intervention effects are 

particularly strong for children from low-income households, who have fewer experiences in 

playing number games and have less numerical knowledge than their peers (Siegler, 2009). 

Improvements in magnitude understanding have positive causal influences on arithmetic 

learning (Booth & Siegler, 2008; Siegler & Ramani, 2009) and memory for numbers 

(Thompson & Siegler, 2010). 

Our correlational analyses suggest that similar interventions might be effective in the 

domain of fractions. Evidence in support of this hypothesis comes from two different 

intervention studies with elementary school children in the domain of fractions. First, the 

study of Gabriel and colleagues (2012) with 292 4th and 5th graders who received differential 

instruction on fraction understanding for 10 weeks, two times a week, 30 minutes per session, 

demonstrated that learning activities based on the use of card games focusing on the 

representation and manipulation of fractions in terms of their magnitudes, considerably 

increased students’ fraction magnitude understanding. Similar results were obtained in the 

study conducted by Fuchs and colleagues (2013), involving 259 at-risk 4th graders receiving 

different interventions about fraction understanding and arithmetic for 12 weeks, three times a 

week, 30 minutes per session. The intervention, which put a greater emphasis on 

measurement and number line interpretations of fractions, was more effective than an 

alternative instructional approach, which emphasized part-whole interpretations of fractions. 

Children’s increases in magnitude understanding mediated their increases in other outcome 
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measures. However, the different interventions applied in the reported studies combined a 

variety of instructional techniques, learner activities, and fraction representations. Subsequent 

research will have to clarify if, when, how, and for whom interventions can improve 

magnitude understanding of fractions and whether these improvements transfer to fraction 

arithmetic and mathematical achievement. 
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5. Footnotes 

1It should be noted that knowledge acquisition, instruction, and cognitive development are 

closely intertwined both in real life and in the integrated theory of numerical development. 

Therefore, the word development in the latter theory’s name should be understood in its 

broadest meaning, i.e., as integrating -- rather than excluding -- knowledge acquisition and 

instruction as important influences on people’s numerical development. However, for 

readability reasons, the authors decided not to include all three sources of competence growth 

in the theory’s name and refer to the, in the learning sciences, well-known and frequently used 

term development. 

2We selected three countries that do not differ in the timing of fraction instruction. 

However, as suggested by one reviewer, it would be very interesting to explore the 

effectiveness of different timing of fraction and pre-algebra instruction on students’ further 

math development in future investigations. 
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Table 1. 

Number, gender and age of participants per country and grade 

Country Grade n Gendera Age (in years) 

   m f M SD 

Belgium 6 30 13 17 11.2 0.5 

 8 34 11 22 13.3 0.5 

China 6 30 22 8 12.3 0.6 

 8 39 19 20 14.3 0.7 

U.S. 6 31 19 12 11.4 0.6 

 8 23 11 12 13.2 0.4 
a Gender information is missing for 1 Belgian 8th grader. 
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Table 2. 

Performances on fraction tasks per country and grade (SD) 

Country Grade Number 

line 0-1 

PAE 

Number 

line 0-5 

PAE 

Comparison 

accuracy 

Addition 

accuracy 

Division 

accuracy 

Belgium 6   9.38 

(8.01) 

20.08 

(11.28) 

76.67 (21.04) 79.17 

(24.64) 

56.67 

(42.00) 

 8   5.05 

(4.34) 

12.20 

(6.37) 

86.52 (21.02) 86.76 

(20.63) 

84.56 

(26.12) 

China 6   9.82 

(8.05) 

13.73 

(7.68) 

74.17 (33.93) 90.83 

(15.37) 

89.17 

(26.00) 

 8   3.88 

(2.05) 

  5.97 

(2.97) 

88.46 (19.37) 91.03 

(14.61) 

92.95 

(20.64) 

U.S. 6 17.38 

(12.88) 

26.23 

(9.99) 

65.86 (22.81) 17.74 

(30.41) 

14.52 

(21.19) 

 8 14.93 

(11.79) 

17.97 

(8.85) 

76.81 (17.58) 51.09 

(40.93) 

31.52 

(38.60) 
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Table 3. 

Correlations between fraction tasks and general math achievement score per country and 

grade 

Country Grade Task Comparison 

accuracy 

Arithmetic 

accuracy 

Math 

achievement 

Belgium 6 Number line PAE -.08 -.44** -.65** 

  Comparison accuracy   .17  .28 

  Arithmetic accuracy    .25 

 8 Number line PAE -.46** -.32* -.55** 

  Comparison accuracy   .23  .09 

  Arithmetic accuracy    .35* 

China 6 Number line PAE -.00 -.35* -.76** 

  Comparison accuracy  -.18 -.01 

  Arithmetic accuracy    .15 

 8 Number line PAE -.04 -.23 -.20 

  Comparison accuracy  -.07 -.12 

  Arithmetic accuracy    .25 

U.S. 6 Number line PAE -.62** -.36* -.65** 

  Comparison accuracy   .36*  .57** 

  Arithmetic accuracy    .64** 

 8 Number line PAE -.78** -.31 -.76** 

  Comparison accuracy   .24  .60** 

  Arithmetic accuracy    .53** 

* p < .05; ** p < .01 
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Table 4. 
Hierarchical regression analyses: adjusted r², F- and β- values per model, country and grade 

Country Grade Model Predictor Adjusted r²  F β 
Belgium 6 1 Arithmetic accuracy .03    1.79  .25 
  2 1_Arithmetic accuracy .38    9.89** -.05 
   2_Number line PAE    -.67** 
  3 Number line PAE .40  20.34** -.65** 
  4 1_Number line PAE .38    9.89** -.67** 
   2_Arithmetic accuracy    -.05 
 8 1 Arithmetic accuracy .10    4.45*  .35* 
  2 1_Arithmetic accuracy .29    7.64**  .21 
   2_Number line PAE    -.48** 
  3 Number line PAE .28  13.18** -.55** 
  4 1_Number line PAE .29    7.64** -.48** 
   2_Arithmetic accuracy     .21 
China 6 1 Arithmetic accuracy -.01  < 1  .15 
  2 1_Arithmetic accuracy .56  19.20** -.14 
   2_Number line PAE    -.80** 
  3 Number line PAE .56  37.27** -.76** 
  4 1_Number line PAE .56  19.20** -.80** 
   2_Arithmetic accuracy    -.14 
 8 1 Arithmetic accuracy .04    2.40  .25 
  2 1_Arithmetic accuracy .03    1.65  .21 
   2_Number line PAE    -.16 
  3 Number line PAE .02    1.60 -.20 
  4 1_Number line PAE .03    1.65 -.16 
   2_Arithmetic accuracy     .21 
U.S. 6 1 Arithmetic accuracy .39  20.18**  .64** 
  2 1_Arithmetic accuracy .59  22.16**  .47** 
   2_Number line PAE    -.48** 
  3 Number line PAE .40  21.20** -.65** 
  4 1_Number line PAE .59  22.16** -.48** 
   2_Arithmetic accuracy     .47** 
 8 1 Arithmetic accuracy .25    7.89*  .53* 
  2 1_Arithmetic accuracy .66  21.23**  .35* 
   2_Number line PAE    -.66** 
  3 Number line PAE .55  27.08** -.76** 
  4 1_Number line PAE .66  21.23** -.66** 
   2_Arithmetic accuracy     .35* 

* p < .05; ** p < .01 
 
(NOTE: Table 4 was made smaller for ease of reading in this version of the final manuscript.) 
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